Existence for a time-dependent heat equation with non-local radiation terms

Author(s):  
Michael Metzger
2006 ◽  
Vol 2 (S239) ◽  
pp. 314-316 ◽  
Author(s):  
Achim Weiss ◽  
Martin Flaskamp

AbstractThe non-local, time-dependent convection theory of Kuhfuß (1986) in both its one- and three-equation form has been implemented in the Garching stellar evolution code. We present details of the implementation and the difficulties encountered. Specific test cases have been calculated, among them a 5 M⊙ star and the Sun. These cases point out deficits of the theory. In particular, the assumption of an isotropic velocity field leads to too extensive overshooting and has to be modified at convective boundaries. Some encouraging aspects are indicated as well.


2000 ◽  
Vol 661 ◽  
Author(s):  
Shirish M. Chitanvis

We have mapped the physics of a system of random copolymers onto a time-dependent density functional-type field theory using techniques of functional integration. Time in the theory is merely a label for the location of a given monomer along the extent of a flexible chain. We derive heuristically within this approach a non-local constraint which prevents segments on chains in the system from straying too far from each other, and leads to self-assembly. The structure factor is then computed in a straightforward fashion. The dependence of various calculated quantities on the average chain length are compared with experiments. The profile and size of spherulitic mesoscale domains is also computed.


Author(s):  
Jens Markus Melenk ◽  
Alexander Rieder

Abstract We consider a time-dependent problem generated by a nonlocal operator in space. Applying for the spatial discretization a scheme based on $hp$-finite elements and a Caffarelli–Silvestre extension we obtain a semidiscrete semigroup. The discretization in time is carried out by using $hp$-discontinuous Galerkin based time stepping. We prove exponential convergence for such a method in an abstract framework for the discretization in the spatial domain $\varOmega $.


Sign in / Sign up

Export Citation Format

Share Document